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a b s t r a c t

The generalized magneto-thermoelasticity theory, based on Green–Naghdi model, is used
to study the thermal shock problem of a fiber-reinforced anisotropic half-space. The solid
half-space deforms because of thermal shock, and due to the application of the magnetic
field. Maxwell’s equations are formulated and the generalized coupled governing equations
are derived. Finite element method with the Laplace transform technique is used to obtain
the general solution. The distributions of the considered physical variables are represented
graphically. The influence of the magnetic field is discussed. Some particular cases of spe-
cial interest due to the application of two types of Green and Naghdi’s theory have been
deduced.
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1. Introduction

Thermal shock is usually modeled using analytical solution for the temperature profiles [1]. The thermal boundary con-
ditions for this solution may be instantaneous change in surface temperature, constant convective heat transfer coefficient,
or constant heating (cooling) rate. Many earlier studies on thermal problems considered thermal shock for composite struc-
tures or fiber-reinforced half-spaces. For example, Lessen [2] formulated the problem of initial thermal shock and found that
the solution is similar to that of the Fourier equation with a modified diffusivity. Dolotov and Kill [3] obtained the small-time
asymptotic form of the exact solution of the axially symmetric problem of the thermal shock at the boundary of an elastic
half-space. Mukherjee and Sinha [4] examined the coupled dynamic thermoelastic response of a fibrous composite plate
exposed to a thermal shock by using the finite element method. Tianhu et al. [5] used the theory of generalized thermoelas-
ticity, based on Lord-Shulman theory with one relaxation time [6] to study the electromagneto-thermoelastic interactions in
a semi-infinite perfectly conducting solid. This solid is subjected to a thermal shock on its surface when it and its adjoining
vacuum are subjected to a uniform axial magnetic field. Othman [7] considered a 2-D coupled problem in electromagneto-
thermoelasticity for a thermally and electrically conducting half-space solid whose surface is subjected to a thermal shock.
He used Lord-Shulman generalized thermoelasticity theory with one relaxation time [6]. Ezzat and Youssef [8] established a
3-D model of the generalized thermoelasticity with one relaxation time for a specific problem of a half space subjected to
thermal shock and traction free surface. Sarkar and Lahiri [9] considered a 3-D problem for a homogeneous, isotropic and
thermoelastic half-space. This half-space is subjected to a time-dependent heat source on the traction-free boundary of
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the space. They used the generalized thermoelasticity theory based on Green–Naghdi model II [10] (thermoelasticity without
energy dissipation).

It is known from now that the classical coupled thermoelasticity theory leads to a parabolic type heat conduction equa-
tion, called the diffusion equation. This theory was proposed by Biot [11] with the introduction of the strain-rate term in the
Fourier heat conduction equation. It predicts finite propagation speed for elastic wave (physically unrealistic) but an infinite
speed for thermal disturbance. Different generalized thermoelasticity theories are presented to overcome such an absurdity
(see, e.g., Lord–Shulman [6] and Green–Lindsay [12] theories) and advocating the existence of finite thermal wave speed in
solids. Many researchers developed these theories by introducing one or two relaxation times in the thermoelastic process,
either by modifying Fourier’s heat conduction equation or by correcting the energy equation and Neumann–Duhamel rela-
tion. The Lord–Shulman theory is based on the modified Fourier’s law of heat conduction, and admits one relaxation time.
However, the Green–Lindsay theory modifies both the energy equation and the Neumann–Duhamel relation, and allows two
relaxation times. Lastly, Green and Naghdi [10,13] provide sufficient basic modifications in the constitutive equations that
permit treatment of a much wider class of heat flow problems. The development is quite general, and the characterization
of the material response for the thermal phenomena is based on three types of the constitutive function (see Green and Nag-
hdi [14–16]). The natures of these types of constitutive equations are such that when the respective theories are linearized,
type I is the same as the classical heat equation (based on Fourier’s law) whereas the linearized versions of types II and III
permit propagation of thermal waves at finite speed. The entropy flux vector in types II and III (i.e. thermoelasticity without
energy dissipation and thermoelasticity with energy dissipation) models are determined in terms of the potential that also
determines stresses.

The influence of the primary magnetic field to the theory of thermoelasticity has received attention of many researchers
due to its widely applications. Sherief and Ezzat [17] considered the 1-D problem of generalized thermoelastic electrically
conducting half-space permeated by a primary uniform magnetic field when the bounding plane is suddenly heated to a con-
stant temperature. Baksi et al. [18] examined magneto-thermoelastic problems with thermal relaxation and heat sources in a
3-D infinite rotating elastic medium. Lotfy [19] and Othman and Lotfy [20] studied the influences of a magnetic field and
rotation on a two-dimensional problem of fiber-reinforced thermoelasticity based on the coupled theory [11], Lord–Shulman
theory [6], and Green–Lindsay theory [12].

In the present work, the Green–Naghdi theory is applied to study the influence of the magnetic field for the thermal shock
problem of a fiber-reinforced anisotropic half-space. The problem has been solved numerically using a finite element
method. The distributions of the temperature, displacements and stresses are represented graphically. Numerical results
for the field quantities are given and illustrated in the presence and absence of the magnetic field using both types of
Green–Naghdi theory.

2. Formulation of the problem

Let us consider the problem of a perfectly conducting thermoelastic half-space ðx P 0Þ: A magnetic field with primary
constant intensity ~H ¼ ð0;0;H0Þ is acting parallel to the bounding plane (taken as the direction of the z-axis). The surface
of the half-space is subjected to a thermal shock which is a function of y and t. Thus, all the quantities considered will be
functions of the time variable t, and of the coordinates x and y. Due to the application of the initial magnetic field ~H, there
results an induced magnetic field h and an induced electric field~E. Let us begin this consideration with the linearized equa-
tions of electro-dynamics of slowly moving medium [7]

~J ¼ curl~h $ e0
~_E; ð1Þ

curl ~E ¼ $ l0
~_h ð2Þ

~E ¼ $ l 0ð~_u % ~HÞ; ð3Þ

div ~h ¼ 0; ð4Þ

where l 0 is the magnetic permeability; e0 is the electric permeability, ~_u is the particle velocity of the medium, ~h is the
induced magnetic field vector, ~E is the induced electric field vector and ~J is the current density vector. These equations
are supplemented by the displacement equations of the theory of elasticity, taking into consideration the Lorentz force Fi

to give

rij;j þ Fi ¼ q€ui; ð5Þ

Fi ¼ l0ð~J % ~HÞi; ð6Þ

where rij is the stress tensor, ui are the displacement components and q is the mass density. The comma notation is used for
spatial derivatives and superimposed dot represents time differentiation. The constitutive equation for a fiber-reinforced
linearly thermoelastic anisotropic medium whose preferred direction is that of a unit vector ~a is
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rij ¼ kekkdij þ 2lT eij þ aðakamekmdij þ aiajekkÞ þ 2ðlL $ lTÞðaiakekj þ ajakekiÞ þ bakamekmaiaj $ bijðT $ T0Þdij;

i; j; k;m ¼ 1;2;3: ð7Þ

where T is the temperature change of a material particle, T0 is the reference uniform temperature of the body, bij is the ther-
mal elastic coupling tensor, dij is the Kronecker delta, k and lT are elastic parameters, a; b and ðlL $ lTÞ are reinforced aniso-
tropic elastic parameters and ~a ' ða1; a2; a3Þ; a2

1 þ a2
2 þ a2

3 ¼ 1. The heat conduction equation

K(T ;ij þ Kij
_T ;ij ¼ qce

€T þ T0€ui;j; ð8Þ

where ce is the specific heat at constant strain, Kij are the thermal conductivity components and K( is the material charac-
teristic of the theory. For the problem of a thermoelastic half-space ðx P 0Þ in the context of Green-Naghdi’s (GNIII and GNII)
generalized thermoelasticity theory (with and without energy dissipation), all the considered functions will be depend on
the time t and the coordinates x and y. Thus, the displacement components ui will be

ux ¼ uðx; y; tÞ; uy ¼ mðx; y; tÞ; uz ¼ 0: ð9Þ

Let us choose the fiber-direction as~a ' ð1;0;0Þ so that the preferred direction is the x-axis and Eqs. (5)–(7) are simplified
as

rxx ¼ k þ 2aþ 4lL $ 2lT þ b
! " @u

@x
þ ðk þ aÞ @m

@y
$ b11ðT $ T0Þ; ð10Þ

ryy ¼ ðk þ aÞ @u
@x
þ ðk þ 2lTÞ

@m
@y
$ b22ðT $ T0Þ; ð11Þ

rxy ¼ lL
@m
@x
þ @u
@y

# $
; ð12Þ

Fx ¼ l0H2
0
@2u
@x2 þ

@2m
@x@y

$ e0l0
@2u
@t2

 !
; ð13Þ

Fy ¼ l0H2
0

@2u
@x@y

þ @
2m
@y2 $ e0l0

@2m
@t2

 !

; ð14Þ

ðA11 þ qR2
HÞ
@2u
@x2 þ ðA12 þ qR2

HÞ
@2m
@x@y

þ A13
@2u
@y2 $ b11

@T
@x
¼ q 1þ R2

H

c2

 !
@2u
@t2 ; ð15Þ

ðA22 þ qR2
HÞ
@2m
@y2 þ ðA12 þ qR2

HÞ
@2u
@x@y

þ A13
@2m
@x2 $ b22

@T
@y
¼ q 1þ R2

H

c2

 !
@2m
@t2 ; ð16Þ

K( þ K11
@

@t

# $
@2T
@x2 þ K( þ K22

@

@t

# $
@2T
@y2 ¼ qce

@2T
@t2 þ T0

@2

@t2 b11
@u
@x
þ b22

@m
@y

# $
; ð17Þ

where

A11 ¼ k þ 2ðaþ lTÞ þ 4ðlL $ lTÞ þ b; R2
H ¼

l0H2
0

q ;

A12 ¼ aþ k þ lL; A13 ¼ lL; A22 ¼ k þ 2lT ; c2 ¼
1

e0l0
;

b11 ¼ ð2k þ 3aþ 4lL $ 2lT þ bÞa11; b22 ¼ ð2k þ aÞa11 þ ðk þ 2lTÞa22;

ð18Þ

in which a11 and a22 are coefficients of linear thermal expansion. In what follows, it is convenient now to introduce the fol-
lowing dimensionless variables:

ðx0; y0;u0; m0Þ ¼ c1vðx; y;u; mÞ; t0 ¼ c2
1vt; T 0 ¼ b11ðT $ T0Þ

qc2
1

; v¼ qce

K11
;

ðr0xx;r0xy;r0yyÞ ¼
1

qc2
1
ðrxx;rxy;ryyÞ; h0 ¼ h

H0
; c2

1 ¼
A11

q :

ð19Þ

In terms of the non-dimensional quantities defined in Eqs. (19), the above governing equations reduce to (dropping the
dashed for convenience)
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